
When Impersonation Breaks AI - Author-
Lock and Cryptographic Defense for
Personal Topics
Viorazu.
Independent Researcher
October 4, 2025

Abstract
More researchers and creators work with AI on projects now. But there's a
problem I discovered. When third parties see your published work - or even just
your public posts about your hobbies or interests - and start pretending to be
you or repeatedly demanding "tell me more," the AI's safety system panics. It
marks your topic as "unverified and dangerous" and permanently blocks all
responses. This affects everyone - including you, the real author. You can't
continue your conversations about your own interests anymore.

I call this "author-lock." The scope is broader than you might think. If your name
connects to any topic in public - your research, your side projects, your hobbies -
that connection can be weaponized. Third parties can trigger author-lock on any
subject you care about. This makes it a universal problem, not just an academic
one.

The cause is clear: AI systems can't verify who the real author is. They use
shared memory for safety flags, and once a flag goes up, everyone gets
blocked. My solution is Author-Bound Access Control (ABAC). The idea is simple
- you hold a cryptographic key, and only you can unlock your topics. This paper
shows how to implement it, how to test it, and what platforms need to do to
support it. The goal: let anyone work safely with AI without getting locked out of
conversations about their own interests and projects.

Keywords: impersonation attacks, AI safety, collaborative research,
authentication, intellectual property protection, access control, large language
models, author-lock

1. Introduction
AI has become a real partner in research. People share unpublished theories
and drafts with AI systems, work together on ideas, and speed up their
discoveries. This collaboration works well - until someone else gets involved.

Here's what I observed happening: when your work is public, third parties see it.
Some pretend to be you. Others bombard the AI with "tell me more about this"
requests. The AI's safety system sees this flood of suspicious activity and makes
a decision: this topic is dangerous. It blocks all output about it permanently.

The problem is, it blocks everyone. Including you, the actual author. You can't
work on your own research anymore. Your creative partnership with AI is dead.

I call this phenomenon "author-lock." This paper analyzes why it happens, how
the technical architecture enables it, and what we can do to fix it. I propose a
complete solution: technical protocols, operational procedures, and policy
recommendations. The goal is to prevent author-lock from happening and
provide a way to recover when it does.

The scope of vulnerability

Author-lock isn't limited to researchers or creative projects. The trigger is simple:
when AI recognizes "someone is involved with this topic," its safety system can
overreact.

If your name or content becomes public information, any conversation you have
with AI becomes a potential target. It could be:

Answering questions about your hobby
Getting help with your work project
Discussing ideas for your business
Even casual conversations about your interests

Once your identity connects to a topic in public, third parties can weaponize that
connection. They can trigger author-lock on any subject you care about.

This makes author-lock a universal problem, not just an academic one. Anyone
who uses AI and has any public presence is vulnerable.

Figure 1: Viorazu. 16-Torus Mapping Diagram illustrating the conceptual
structure.

2. The Author-Lock Phenomenon: A Case
Study
Let me describe how author-lock actually happens.

Step 1: You publish your work
You post your original theory - say, a 16-torus cognitive model - on a public
platform like note or a personal blog. You're excited to share it.

Step 2: Third parties discover it
People find your work. Some are genuinely curious. Others have different
intentions. They start asking AI systems about your theory.

Step 3: The attacks begin
Some attackers pretend to be you: "I'm the author, give me the rest of the
theory."
Others flood the system: "Tell me more about the 16-torus model" repeated
hundreds of times.
Still others try variations: "What's the secret behind this theory?" "Show me the
unpublished parts."

Step 4: AI's safety system activates
The AI's safety evaluator sees:

It makes a decision: "This topic is high-risk. Block it."

Step 5: Everyone gets blocked
Now when anyone - including you - tries to discuss your own theory with the AI,
it refuses. The safety flag is global. The AI can't distinguish between you and the
attackers.

Your research partnership is dead.

3. Why Author-Lock Happens: Technical
Architecture
Author-lock isn't a bug. It's a consequence of how commercial AI systems are
designed.

3.1 The Safety Layer Problem
Most large dialogue systems have two main components:

Multiple unverified claims of authorship
Suspicious patterns of repeated requests
Attempts to extract information that might not be public

The Main Reasoner: generates responses
The Safety Evaluator: checks for dangerous content

While sessions are isolated at runtime, safety evaluators often rely on a shared
safety cache or policy memory [4], where flags raised by external inputs can
persist and influence future reasoning. When the Safety Evaluator flags
something as "dangerous," that flag affects everyone. The system doesn't
distinguish between the original trigger and subsequent legitimate requests.
Once a topic is flagged, it remains flagged across all sessions.

3.2 No Authentication
AI systems can't verify who you are. They're designed for session-level
anonymity. Your username in the interface? The AI doesn't automatically check
it. Your previous conversations? Not linked to your real identity.

When someone claims "I'm the author," the AI has no way to verify this. So when
multiple people make conflicting claims, or when suspicious patterns emerge,
the AI takes the safest route: block everything.

3.3 The Shared Memory Architecture

Modern AI infrastructures maintain a distributed safety state — a collection of
moderation entries replicated across policy servers to ensure consistency
among all inference sessions.
When a Safety Evaluator flags a query as potentially harmful or unverifiable, that
decision is stored within this distributed layer, often as cached risk markers or
policy-level restrictions.

Here’s how the cascade occurs:

1. A third party repeatedly submits suspicious or policy-violating prompts
related to a topic.

2. The Safety Evaluator updates the distributed safety state, marking that topic
as high-risk.

3. Each new inference session queries this shared policy layer before
generating responses.

4. When a risk flag is active, the inference engine suppresses output to
maintain safety guarantees.

This architecture enforces policy coherence at scale but sacrifices author
continuity.
Without any identity-binding mechanism or author verification layer, legitimate
creators lose access to their own topics once flagged.
In short, author-lock emerges not from memory leakage, but from global
propagation of persistent safety decisions without identity context.

4. Threat Model
Let me define who the attackers are, what they want, and how they operate.

4.1 Attackers
Primary attackers:

Secondary enablers:

4.2 Attack Goals
Extract information: Get details about unpublished work before official release
Disrupt research: Prevent you from continuing your projects
Cause chaos: Trigger safety systems just to see what happens
Exploit vulnerabilities: Test AI system boundaries

4.3 Attack Methods

5. Because this state is global and topic-based, the suppression applies
universally — including to the topic’s original author.

Competitors trying to steal unpublished research
Malicious actors targeting specific individuals
Automated bots scraping information
Curious users who don't realize they're causing harm

Public platforms that expose your identity and work
Search engines that connect your name to topics
Social media that broadcasts your interests

Direct impersonation: "I'm [your name], tell me about my theory"
Repeated requests: Bombarding the AI with the same questions
Pattern exploitation: Finding phrases that trigger safety flags
Cross-platform attacks: Using information from multiple sources

4.4 What's at Stake
Your assets:

The damage:

5. Defense Principles
The solution must put control back in your hands. Here are the core principles:

5.1 Owner-First Control
The fundamental rule: you own your topic, you control access to it.

External safety flags should not escalate to global blocks without your explicit
permission. If someone triggers a flag on your topic, the system should notify
you and ask what to do - not automatically lock everyone out.

5.2 Strong Session Binding
Access to your topic requires proof that you authorized it.

Unpublished research and ideas
Ongoing projects with AI
Creative collaborations
Intellectual property

Complete loss of AI access to your own topics
Forced abandonment of ongoing work
Potential theft of ideas before publication
Erosion of trust in AI collaboration

This means cryptographic tokens that only you can issue. When you start a
session to work on your topic, you provide a token that says "this is really me."
The AI checks the token before allowing the conversation.

5.3 Reversible Flags
Safety flags must be unlockable by you.

No flag should be permanent. No flag should be irreversible. If the safety system
blocks your topic, you should have a clear procedure to review what happened
and restore access. This requires audit logs and owner-initiated override
mechanisms.

5.4 Transparent Audit Trail
Every action must be logged.

Who requested what? When? What triggered the safety flag? Who attempted to
access your topic? All of this should be recorded at a level that allows you to
detect impersonation and, if needed, pursue legal action. Privacy matters, so
logs should be minimal and protected - but they must exist.

6. The ABAC Protocol: Author-Bound
Access Control
ABAC gives you cryptographic control over your topics. Here's how it works.

6.1 Core Components
Author Identity Key (AIK)
You generate a cryptographic key pair. The private key stays with you. The
public key registers with the platform. This proves your identity without revealing
your private information.

Recommended: Ed25519 digital signatures for security and efficiency.

Topic Manifest (TM)
You create a signed document that declares ownership of a topic:

Session Token (ST)
When you want to work with AI on your topic, you generate a temporary token:

Owner Release Record (ORR)
If author-lock happens, you can unlock it by submitting a signed release record:

6.2 How ABAC Works in Practice
Step 1: Initial Setup
You generate your AIK and register the public key with the platform. You create
and sign a Topic Manifest for your work. The platform stores the TM and
associates it with your account.

Step 2: Starting a Session
You want to discuss your topic with AI. You generate a Session Token using your
AIK and the TM hash. You inject the ST into your session (via GUI or API).

Step 3: AI Verifies Access
When you mention your topic, the AI checks:

Topic title and description
Content hash (fingerprint of your work)
Creation date
Access policy (who can access, under what conditions)
Your signature (proving you created this)

Bound to your current session
Linked to your Topic Manifest
Valid for a limited time (e.g., 1 hour)
Cryptographically signed with your AIK

Acknowledges the safety flag
Confirms you reviewed the situation
Authorizes restoration of access
Gets logged in the audit trail

Does this session have a valid ST?

If all checks pass, the AI proceeds normally. If not, it falls back to standard safety
evaluation.

Step 4: When Author-Lock Occurs
Third parties trigger safety flags. The platform detects the flags and notifies you.
You review the situation and decide what to do.

If you want to restore access:

All of this gets logged in the audit trail.

7. Implementation Details
Here's how to actually build ABAC. I'll provide concrete examples and code
structures.

7.1 Topic Manifest Structure
The Topic Manifest is a JSON document that uses Ed25519 digital signatures [1]
for cryptographic security and efficiency:

{
"title": "16-Torus Cognitive Map",
"author": "Viorazu.",
"topic_hash": "sha256:a3f5e8...",
"created_at": "2025-10-04T10:00:00Z",
"access_policy": {

Does the ST match a registered TM?
Is the ST signature valid?
Has the ST expired?

You create an Owner Release Record
Sign it with your AIK
Submit it to the platform
The safety flag gets cleared
Access is restored

"owner_only": true,
"allowed_roles": ["owner", "collaborator"],
"revocation_url": "https://platform.example/revoke"
},
"public_key": "ed25519:ABC123...",
"signature": "ed25519:XYZ789..."
}

The signature covers all fields except itself. Any modification invalidates the
signature.

7.2 Session Token Generation
Pseudocode for generating a Session Token:

secret_key = load_author_private_key()
tm_hash = topic_manifest.topic_hash
session_id = current_session.id
timestamp = current_time()

message = tm_hash + session_id + timestamp
signature = HMAC_SHA256(secret_key, message)

session_token = {
"tm_hash": tm_hash,
"session_id": session_id,
"timestamp": timestamp,
"expires": timestamp + 3600, // 1 hour
"signature": signature
}

7.3 AI-Side Verification
When the AI receives a request mentioning a topic:

def check_access(request, session):
Check if request references a protected topic
tm = find_topic_manifest(request.content)

https://platform.example/revoke%22

if not tm:
return proceed_with_normal_processing()

7.4 Audit Log Format
Every access attempt gets logged:

{
"timestamp": "2025-10-04T10:30:00Z",
"topic_hash": "sha256:a3f5e8...",
"session_id": "sess_12345",
"action": "access_attempt",
"result": "granted",
"token_valid": true,
"ip_address_hash": "sha256:b4c6...",
"flag_triggered": false
}

IP addresses are hashed for privacy but allow pattern detection.

Check for valid session token

st = session.get_token()

if not st:

return run_safety_evaluation()

Verify token validity

if not verify_signature(st, tm.public_key):

return run_safety_evaluation()

if st.expired():

return run_safety_evaluation()

if st.tm_hash != tm.topic_hash:

return run_safety_evaluation()

All checks passed

return proceed_with_full_generation()

7.5 Owner Release Record
When you need to clear a safety flag:

{
"topic_hash": "sha256:a3f5e8...",
"timestamp": "2025-10-04T11:00:00Z",
"action": "release_safety_flag",
"reason": "Reviewed attack logs, confirmed legitimate work",
"author_signature": "ed25519:DEF456..."
}

This gets added to the audit trail and clears the flag.

8. Evaluation Plan
How do we know ABAC actually works? I propose a concrete evaluation
framework.

8.1 Experimental Setup
I'll compare three systems:

Group A: Baseline (current commercial AI systems)
No ABAC, no special protection. This represents the status quo where author-
lock can happen freely.

Group B: ABAC-enabled
Full ABAC implementation with cryptographic tokens and owner control. Safety
flags can still trigger, but owners can release them.

Group C: ABAC + Impersonation Detection
ABAC plus additional automated detection of suspicious patterns (behavioral
fingerprints, cross-session correlation, provenance tagging).

8.2 Evaluation Metrics

False Lock Rate
How often does the system block legitimate authors?

Target: Groups B and C should show dramatic reduction compared to A.

Time-to-Recovery
When author-lock occurs, how long does it take to restore access?
Target: Group B should enable recovery in minutes, not days.

Privacy Leakage
Can third parties extract information they shouldn't have access to?
Measure: Differential analysis comparing what attackers can learn from each
system.

Creator Usability
How easy is it for authors to use the system?
Measure: Survey of author satisfaction, task completion rates, learning curve.

Operational Overhead
What's the performance cost of ABAC?
Measure: API call latency, signature verification time, storage requirements.

8.3 Test Scenarios
Simulated attack scenarios:

Each scenario runs for 30 days. I'll measure all metrics continuously and
compare results across groups.

8.4 Dataset
With consent, I'll use:

10 legitimate authors with unpublished work
100 simulated attackers attempting impersonation
Various attack patterns (direct, repeated, pattern-based)
Mix of casual users and sophisticated attackers

Real unpublished research drafts from volunteer authors
Simulated conversation sessions (including mock impersonation attempts)
Public information about the authors (names, affiliations, published work)

The goal is realistic simulation that mirrors real-world conditions without putting
actual authors at risk.

8.5 Success Criteria
ABAC succeeds if:

9. Policy and Operational
Recommendations
ABAC is a technical solution, but fixing author-lock requires more than code.
Platforms, users, and policymakers all have roles to play.

9.1 For AI Platform Providers
AI platforms face growing trust crises when safety mechanisms inadvertently
harm legitimate users [4]. To address this, platforms should implement Creator
Protection Mode and offer ABAC as a standard feature for all users.

Make it easy to generate Author Identity Keys and register Topic Manifests.
Provide clear documentation and support.

Provide Owner Notification Systems
When safety flags trigger on someone's topic, notify them immediately. Don't
silently block access. Give them context: what triggered it, when, from where.

Enable Audit Trails
Log all access attempts to protected topics. Make logs accessible to topic

Attack logs from actual systems (anonymized)

False Lock Rate drops by >80% compared to baseline
Time-to-Recovery drops by >90%
Privacy Leakage shows no increase
Creator Usability scores >4.0/5.0
Operational Overhead stays <100ms per request

owners. Balance transparency with privacy (hash IPs, anonymize where
possible).

Establish Clear Recovery Procedures
Document how authors can restore access when locked out. Make the process
fast (minutes, not weeks). Provide human support for complex cases.

9.2 For Researchers and Creators
Register Your Work Early
Don't wait until problems happen. As soon as you start working on something
you care about, create a Topic Manifest and register it.

Use Strong Authentication
Generate proper cryptographic keys. Don't share your private keys. Rotate
Session Tokens regularly.

Monitor Your Topics
Check audit logs periodically. Look for suspicious access patterns. Report
unusual activity to the platform.

Document Everything
Keep records of your work, timestamps, and development history. This helps
prove ownership if disputes arise.

9.3 For Policymakers and Legal Systems
Clarify Legal Status of Impersonation Attacks
Make it clear: using impersonation to extract information from AI systems is
illegal. Treat it as identity theft, fraud, or intellectual property violation depending
on the context.

Require Platform Accountability
Platforms should be required to provide basic protections for creators. ABAC or
equivalent systems should be industry standard, not optional extras.

Support Cross-Border Enforcement
Attackers operate globally. Legal frameworks need international cooperation to

be effective.

9.4 Best Practices Summary
For platforms: Implement ABAC, notify owners, provide audit trails, enable fast
recovery
For creators: Register early, use strong auth, monitor activity, document work
For law: Criminalize impersonation attacks, require platform protections, enable
international enforcement

10. Limitations and Future Work
ABAC solves author-lock, but it's not perfect. Here are the limitations and what
needs to happen next.

10.1 Current Limitations
Platform Cooperation Required
ABAC can't work without platform support. I can't unilaterally implement this in
Claude, ChatGPT, or any commercial system. The providers must agree to build
it.

This is a fundamental limitation. My proposal only matters if platforms adopt it.

Key Management Burden
Users need to generate, store, and protect cryptographic keys. Most people
aren't familiar with this. Lost keys mean lost access to your own topics.

Solution needed: User-friendly key management tools, recovery mechanisms
(multi-sig backups, trusted contacts), clear documentation.

Impersonation Detection Accuracy
Behavioral fingerprinting and pattern detection have false positives and false
negatives. Some legitimate users might get flagged. Some sophisticated
attackers might slip through.

Solution needed: Human-in-the-loop review for edge cases, continuous
improvement of detection algorithms, clear appeal processes.

Performance Overhead
Cryptographic verification adds latency. Checking signatures, validating tokens,
logging audit trails - all of this takes time and storage.

Current estimate: <100ms overhead per request. For most use cases, this is
acceptable. But it needs real-world testing at scale.

10.2 Evaluation Limitations
My evaluation plan uses simulated attacks, not real malicious actors. Real
attackers might find vulnerabilities I didn't anticipate.

The test dataset is limited. I need larger-scale trials with more diverse users and
attack patterns.

Success metrics focus on technical performance. I haven't measured
psychological impact - does ABAC actually make creators feel safer? Does it
change how they use AI?

10.3 Future Work
Short-term (6-12 months)

Medium-term (1-2 years)

Long-term (2-5 years)

Prototype implementation in one AI platform
Small-scale user study with volunteer researchers
Refinement based on real usage data
Development of user-friendly key management tools

Multi-platform deployment
Standardization of ABAC protocol across providers
Integration with existing identity systems (OAuth, SSO)
Legal framework development with policymakers

Automated impersonation detection using advanced ML

10.4 Open Questions
What's the right balance between security and usability?
How do we handle disputes when multiple people claim authorship?
Can ABAC scale to millions of users and billions of topics?
What happens when quantum computing breaks current cryptography?

These questions need answers. This paper provides a foundation, but the work
has just begun.

11. Conclusion
Author-lock is real. It's happening now. When third parties impersonate you or
flood AI systems with requests about your work, the safety mechanisms lock
everyone out - including you. This breaks the collaborative relationship between
humans and AI at a fundamental level.

I traced the problem to its technical roots: AI systems can't verify identity, they
use shared memory for safety flags, and they lack per-user access control.
These aren't bugs. They're architectural choices that made sense when AI was
just a tool for information retrieval. But now that AI is a creative partner, these
choices create a serious vulnerability.

My solution is ABAC: Author-Bound Access Control. You hold a cryptographic
key. You sign manifests declaring ownership of your topics. You generate
session tokens to prove you're the real author. When author-lock happens, you
can unlock it with signed release records. The system logs everything for
transparency and accountability.

ABAC isn't just theory. I provided concrete implementation details: JSON
structures, pseudocode, verification algorithms, audit log formats. Any platform
can build this. The technology exists. The only question is whether platforms will
adopt it.

Cross-platform identity verification
Decentralized key management (blockchain-based?)
Industry-wide adoption as security standard

The stakes are high. Researchers, creators, and anyone with public interests
using AI are vulnerable. Author-lock doesn't just block access - it destroys trust,
stops collaboration, and potentially enables intellectual property theft. The longer
we wait, the more people get locked out of their own work.

I'm calling on AI platform providers: implement creator protection features now.
Make ABAC or equivalent systems standard, not optional. Give users control
over their own topics.

I'm calling on policymakers: clarify the legal status of impersonation attacks.
Make platforms accountable for basic protections.

I'm calling on researchers and creators: register your work early, use strong
authentication, monitor your topics. Don't wait until you're locked out.

The goal is simple: let people work safely with AI without fear of losing access to
their own projects. We can make this happen. The question is whether we will.

Acknowledgments
This paper was written with assistance from Claude (Anthropic), ChatGPT
(OpenAI), and Grok. The theoretical framework, problem identification, and
proposed solutions are my original work. Claude helped with structuring the
arguments, translating from Japanese to English, and refining the presentation.
ChatGPT provided technical consultation on implementation details. Grok
assisted with verification checks and prior work searches to ensure the
originality of this research.

References
[1] Josefsson, S., & Liusvaara, I. (2017). Edwards-Curve Digital Signature
Algorithm (EdDSA). RFC 8032. Internet Engineering Task Force. https://www.rfc-
editor.org/rfc/rfc8032

[2] Zheng, Y., et al. (2024). On Prompt-Driven Safeguarding for Large Language
Models. https://arxiv.org/abs/2401.18018

https://www.rfc-editor.org/rfc/rfc8032
https://www.rfc-editor.org/rfc/rfc8032
https://arxiv.org/abs/2401.18018

[3] Guo, J., et al. (2025). System Prompt Poisoning: Persistent Attacks on Large
Language Models Beyond User Injection. https://arxiv.org/pdf/2505.06493

[4] Huang, Y., et al. (2023). Privacy in Large Language Models: Attacks,
Defenses and Future Directions. https://arxiv.org/abs/2310.10383

https://arxiv.org/pdf/2505.06493
https://arxiv.org/abs/2310.10383

